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Abstract
We investigate the backward Darboux transformations (addition of the lowest
bound state) of shape-invariant potentials on the line, and classify the subclass
of algebraic deformations, those for which the potential and the bound states
are simple elementary functions. A countable family, m = 0, 1, 2, . . . , of
deformations exists for each family of shape-invariant potentials. We prove that
the mth deformation is exactly solvable by polynomials, meaning that it leaves
invariant an infinite flag of polynomial modules P(m)

m ⊂ P(m)
m+1 ⊂ · · · , where

P(m)
n is a codimension m subspace of 〈1, z, . . . , zn〉. In particular, we prove that

the first (m = 1) algebraic deformation of the shape-invariant class is precisely
the class of operators preserving the infinite flag of exceptional monomial
modules P(1)

n = 〈1, z2, . . . , zn〉. By construction, these algebraically deformed
Hamiltonians do not have an sl(2) hidden symmetry algebra structure.

PACS numbers: 03.65.Fd, 03.65.Ge

1. Introduction

The Darboux transformation [1, 2], a method based on the factorization of second-order
operators, is an important technique for the exact solution of the one-dimensional Schrödinger
equation [3, 4]. The transformation is also a key concept in supersymmetric quantum
mechanics [5] and the theory of integrable systems [6–8]. From the point of view of spectral
theory, a non-singular Darboux transformation can be characterized by the following three
possibilities [9]. First, a potential with the lowest bound state admits a unique forward Darboux
transformation, which deletes the ground state. Second, a potential admits a two-parameter
family (the energy and a shape parameter) of backward Darboux transformations, each of
which adds a lowest eigenvalue. Third, there is also a one-parameter family of isospectral
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transformations, corresponding to two critical values of the shape parameter, which neither
add nor delete bound states [10].

The Darboux transformation relates to exact solutions in several ways [11]. Generally, the
forward transformation deforms a given exactly solvable potential to a new, solvable potential
form. However, if a parametrized family of exactly solvable potentials is shape invariant [12],
i.e. closed with respect to the forward Darboux transformation, then the forward transformation
furnishes an explicit description of the spectrum and eigenfunctions, rather than a new exactly
solvable form. Therefore, to obtain a solvable deformation of a shape-invariant potential, it
is necessary to employ a backward Darboux transformation. This was first done for specific
potentials such as the harmonic oscillator [13], while the general theory was developed in
[6, 9].

However, the general form of the deformed potential features integrals of eigenfunctions
of the original Hamiltonian—in contrast to the original potential, which is an elementary
function, with bound states also described by elementary functions. It has been noted [14] that
only certain discrete values of the energy and shape parameters correspond to an algebraic
deformation, one where the potential and the bound states remain elementary functions. Such
forms are attractive from the modelling standpoint, and are also important theoretically, since
exact results can be obtained even in critical conditions, where numerical techniques break
down.

In the present paper we explain the discrete nature of algebraic deformations by
characterizing such deformations in terms of polynomial modules left invariant by a second-
order differential operator. The invariant module approach is an alternative, inherently
algebraic, approach to exact solvability—developed originally to treat quasi-exactly solvable
Hamiltonians [15–17]. In this approach, one considers a Hamiltonian that, in a suitable gauge,
preserves an infinite flag of polynomial modules

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · · Pn = 〈1, z, . . . , zn〉. (1)

Such a Hamiltonian has an upper-triangular action, and it is, therefore, algebraically
diagonalizable. On the line, there are exactly three potential forms whose Hamiltonian,
in a suitable gauge, preserves (1). These are the classical shape-invariant potential families:
the harmonic oscillator, the Morse [18] and the hyperbolic Pöschl–Teller [19] potentials. This
invariant module approach provides an alternative explanation for the exact-solvability of these
shape-invariant potentials.

The details of this approach can be found in [15, 17] and some generalizations in [20]. The
method of invariant polynomial flags has also been applied in quantum many-body problems
[21]. The question of determining which second-order operators preserve a finite-dimensional
polynomial module has been previously considered in a number of papers, including [22, 23].

We consider the algebraic deformations of the three shape-invariant potential families
[11, 14, 24], and show that, in each case, the mth algebraic deformation produces a Hamiltonian
that, modulo a gauge transformation and a change of variable, preserves an infinite flag of
deformed polynomial modules

P(m)
m ⊂ P(m)

m+1 ⊂ P(m)
m+2 ⊂ · · · ⊂ P(m)

n ⊂ · · · (2)

where each P(m)
n is a certain codimension m subspace of Pn, i.e. the span of n − m + 1

polynomials of degree n.
We study the first deformation (m = 1) in some detail, and show thatP(1)

n is an exceptional
monomial module [22], an invariant vector space spanned by

1, z2, z3, . . . , zn (the first power is omitted).
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We also show that higher deformations produce more complicated polynomial modules, but
we do not analyse these modules here.

We will discuss monomial modules more thoroughly in a forthcoming publication [25].
At this point, we would like to mention that exceptional monomial modules also arise in the
context of N-fold supersymmetry, [26]. Our emphasis is somewhat different, since we are
primarily concerned with the interplay between the backward Darboux transformation and the
class of the operators preserving an infinite flag of polynomial modules.

We also note that invariance of (1) is generally achieved by expressing the gauge
Hamiltonian as a quadratic combination of those generators of sl(2), realized as first-order
differential operators, which leave invariant the infinite flag of polynomial subspaces Pn.
These operators are called Lie-algebraic, and the Hamiltonian is said to have a hidden sl(2)

symmetry algebra. Lie-algebraic potentials in one dimension have been classified in [17].
However, not all exactly solvable potentials are generated by a hidden symmetry, the Coulomb
potential being a notable counterexample [27]. Since the potentials studied here preserve
(2) rather than (1), they lack an sl(2) hidden symmetry algebra structure, and thus furnish a
further indication that the exactly solvable class of potentials is larger than the Lie algebraic
one [15–17].

This paper is structured as follows. In the next section we describe the forward and
backward Darboux transform. In section 3 we discuss exactly solvable operators and
algebraic deformations. We also exhibit the invariant flags corresponding to the algebraic
deformations of the three shape-invariant potential families. In section 4 we consider exactly
solvable operators that preserve the exceptional monomial module, and demonstrate that these
are precisely the first-fold deformations of the shape-invariant Hamiltonians discussed in
section 3.

2. Factorization and the Darboux transformation

Let U(x), x ∈ (−∞,∞) be a continuous, real-valued function, and let

τ = −∂xx + U

be the corresponding formally self-adjoint differential operator. We fix a formal eigenfunction

τ [φ] = λ0φ

and note that every such φ corresponds to a differential factorization

τ − λ0 = α∗α

where

α = ∂x + σx α∗ = −∂x + σx σ = −ln φ. (3)

For this reason we shall refer to φ as the factorization function, and to λ0 as the factorization
energy.

Commutation of the factors defines a partner differential operator

τ̂ − λ0 = αα∗ = −∂xx + Û

where

Û = U + 2σxx.

The operators obey the following intertwining relation:

ατ = τ̂ α. (4)
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As a consequence, the first-order operator α relates the eigenfunctions of the two operators:
given

τ [ψ] = λψ

we also have

τ̂ [ψ̂] = λψ̂ ψ̂ = α[ψ]. (5)

To give a rigorous treatment of the Darboux transformation [7, 28], we assume that
U(x) is bounded from below, and let H be the unique self-adjoint, semi-bounded operator
corresponding to τ . The partner potential Û (x) is continuous if and only if φ is non-
vanishing. In this case, the spectrum of Û (x) is bounded from below, and we let Ĥ denote
the corresponding self-adjoint, semi-bounded operator. Letting A denote the closed operator
corresponding to α, we have that α∗ corresponds to the adjoint A∗. We therefore obtain the
following non-formal factorizations:

H − λ = A∗A Ĥ − λ = AA∗

where the compositions are appropriately restricted.
In particular, A maps D(H), the domain of H, to D(Ĥ). The spectral properties of this

transformation are governed by one of the following three possibilities [6].

(i) Forward transformation: φ is square integrable, and A defines an isomorphism between
ker A = φ⊥ and D(Ĥ). Thus, a forward transformation exists if and only if H possesses
a discrete spectrum, in which case it is unique. The transformed spectrum differs from
the spectrum of H by the removal of λ, the lowest eigenvalue. The first-order operator α

transforms the nth bound state of H to the (n − 1)st bound state of Ĥ.
(ii) Backward transformation: φ−1 is square integrable, and A defines an embedding of D(H)

into D(Ĥ). The range of the embedding is precisely (φ−1)⊥. The spectrum of Ĥ differs
from that of H by the addition of the lowest eigenvalue, namely λ, with the ground state
given by φ−1. The operator α transforms the nth bound state of H to the (n + 1)st bound
state of Ĥ.

A one-parameter family of backward transformations exist for every λ strictly smaller
than the infimium of the spectrum of H. To describe the possibilities, let φ+ and φ− be
the unique (up to a multiple) positive solutions of

τ [φ±] = λφ± (6)

with the property that φ± is square integrable near, respectively, ±∞. The desired φ is of
the form

φ = sφ+ + tφ− s, t > 0.

(iii) Isospectral transformation: neither φ nor φ−1 are square integrable. In this case A acts
as an isomorphism between D(H) and D(Ĥ). The operator α transforms the nth bound
state of H to the nth bound state of Ĥ. Two isospectral Darboux transformations exist for
every λ strictly smaller than the spectrum of H: one corresponding to φ = φ+, and the
other to φ = φ−.

3. Algebraic deformations of shape-invariant potentials.

3.1. Exact solvability

We will call a Schrödinger operator

H = −∂xx + U
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exactly solvable by polynomials if H is equivalent, by a change of variable and a gauge
transformation, to a second-order operator T that preserves an infinite flag of finite-dimensional
polynomial modules

M1 ⊂ M2 ⊂ M3 ⊂ · · · dimMn = n. (7)

The exact solvability comes about because T is upper-triangular relative to a basis adapted to
the above flag, and hence possesses an infinite list of eigenpolynomials. In this paper, we will
make the hypothesis that such an operator is of the form

T = P(z)∂zz + Q(z)∂z + R(z)

where

P(z) = p2z
2 + p1z + p0 p0, p1, p2 ∈ R

is a polynomial of degree 2 or less, and where Q(z), R(z) are rational functions.
We transform the second-order eigenvalue equation

T [f ] = λf

into a Schrödinger equation

H[φ] = λφ

by a change of variables

x =
∫ z

(−P)−
1
2 (8)

and a gauge transformation

φ = epf |z=z(x) (9)

where

p =
∫ z 1

2
P −1

(
Q − 1

2
P ′

)
(10)

U = 1
4P ′′ − 1

2Q′ − 1
4P −1

(
Q − 1

2P ′)(Q − 3
2P ′) + R

∣∣
z=z(x)

. (11)

Let R denote the range of the function z(x), and let us assume that neither Q(z) nor R(z) have
singularities for z ∈ R. We assume that P(z) is not everywhere positive. If it were, then we
change P → −P . With these assumptions we prove the following:

Proposition 1. Exactly one of the following possibilities holds, according to the number and
multiplicity of the real roots of P(z):

(i) There are no real roots. Then, R = (−∞,∞), and U(x) is non-singular.
(ii) There is a double root, ρ. Then, R = (ρ,∞) or (−∞, ρ), and U(x) is non-singular.

(iii) There is a unique, simple root, ρ. Then, R = (−∞, ρ], or [ρ,∞). Both z(x) and U(x)

are even functions. The potential is non-singular if and only if

Q(ρ) = 1
2P ′(ρ) or Q(ρ) = 3

2P ′(ρ). (12)

(iv) There are two distinct roots ρ1 < ρ2, and R = (−∞, ρ1], or [ρ2,∞). Then, both z(x)

and the potential are even functions. The potential is non-singular if and only if (12)
holds with, ρ = ρ1, or with ρ = ρ2, respectively.

(v) There are two distinct roots ρ1 < ρ2, and R = [ρ1, ρ2]. Then, both z(x) and the potential
are periodic functions, and U(x) has a singularity.

Proof. Condition (12) follows from (11). In order for the potential to be non-singular, the
function

(
Q− 1

2P ′)(Q− 3
2P ′) must vanish at those roots of P(z) that lie in R. The singularity

occurs in case (v), because both Q(z) and P ′(z) are first-degree polynomials, and hence (12)
cannot hold for both ρ = ρ1 and ρ = ρ2. �
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Table 1. Shape-invariant potentials on the line.

P(z) Q(z) z(x) U(x)

Ia −1 2z x x2

Ib −4z 4z − 2 x2 x2

II −z2 −(2A + 3)z + 1 ex 1
4 e−2x − (

A + 1
2

)
e−x

III z(1 − z)
(
A − 3

2

)
z + 1 − A cosh2

(
x
2

) 1
4

( 1
4 − A2

)
sech2

(
x
2

)

3.2. Shape-invariant potentials on the line

Let us begin by showing, that the class of exactly solvable Hamiltonians that preserve the
infinite flag (1) consists of shape-invariant potentials on the line. Up to a constant, the most
general form of a second-order operator that preserves (1) is

T = P(z)∂zz + Q(z)∂z (13)

where P(z) and Q(z) are arbitrary second- and first-degree polynomials, respectively. Since
Pn is invariant with respect to affine transformations of the z variable, we can use such
transformations to modify P(z) and Q(z) without loss of generality. Additionally, by rescaling
the x variable, and shifting the spectrum, we reduce our analysis to one of the four canonical
forms as shown in table 1.

By proposition 1, the Q(z) in cases Ia, Ib, and III is the most general form for which U(x)

is non-singular. In case II, we use a translation of the x variable to fix the form of Q(z). Thus,
we have derived the classical shape-invariant potential families: the harmonic oscillator (Ia)
(Ib), the Morse potential (II) and the hyperbolic Pöschl–Teller potentials (III). Each of these
potential forms is discussed in more detail below.

Let us now show that these potentials are shape invariant by construction. A parametrized
family of potentials is called shape invariant if the ground state Darboux transformation acts
by changing the potential parameters, but leaves the form of the potential invariant. For
the operators in question, the ground state energy is λ = 0, and hence the corresponding
factorization is given by

H = (−(−P)
1
2 ∂z + 1

2

(
Q − 1

2P ′)(−P)−
1
2
)(

(−P)
1
2 ∂z + 1

2

(
Q − 1

2P ′)(−P)−
1
2
)∣∣

z=z(x)

where z = z(x) is the change of variable defined in (8). The commutation of the factors
produces a Schrödinger operator Ĥ, which corresponds to the algebraic operator

T̂ = P(z)∂zz + Q̂(z)∂z

where

Q̂ = P ′ − Q. (14)

For this reason, the forward Darboux transformation for these potentials produces another
potential (11) of the same form, but with potential parameters modified by (14).

3.3. Algebraic deformations

Now, let us isolate the values of the energy and shape parameters for which the backward
Darboux transformation of the shape-invariant potentials yields an algebraic deformation. We
will say that the Darboux transformation is an algebraic deformation, when the derivative
of ln φ in (3) is either a rational function or a composition of a rational function with
an exponential. As per (9), (13), for the shape-invariant potentials under discussion, the
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factorization function is of the form

φ(x) = ep(z(x))f (z(x))

where p(z) is a polynomial, z(x) is an elementary function and f (z) is a hypergeometric
function. We will say that such an f (z) is of polynomial type if f ′(z)/f (z) is a rational
function. We observe that

(ln φ(x))′ = p′(z(x))z′(x) +
f ′(z(x))

f (z(x))
z′(x).

Thus, to obtain an algebraic deformation we must demand that f (z) be of polynomial type,
with f (z) non-vanishing in the range R of z(x) (see proposition 1).

The regular solution of the confluent hypergeometric equation [29, section 6.1],

zy ′′(z) + (c − z)y ′(z) − ay(z) = 0 (15)

is given by the confluent hypergeometric function

y(z) = 	(a, c, z) = 1F1(a, c; z).

It can be shown [29, section 6.9] that solutions of polynomial type exist if and only if either a
or c−a is an integer. These solutions, expressed in terms of generalized Laguerre polynomials
La

m(z),m = 0, 1, 2, . . . , are given below:

y1(z) = 	(a, c; z) a = −m

∝ Lc−1
m (z)

y2(z) = z1−c	(a − c + 1, 2 − c; z) c − a = 1 + m

∝ z1−cL1−c
m (z)

y3(z) = ez	(c − a, c;−z) c − a = −m

∝ ezLc−1
m (−z)

y4(z) = z1−c ez	(1 − a, 2 − c,−z) a = m

∝ z1−c ezL1−c
m (−z)

(16)

In general, we have y1(z) = y3(z) and y2(z) = y4(z) [29, section 6.4].
The regular solution of the hypergeometric equation [29, section 6.1],

z(1 − z)f ′′(z) + (c − (a + b + 1)z)f ′(z) − abf (z) = 0 (17)

is given by the Gauss hypergeometric function

f (z) = F(a, b, c; z) = 2F1(a, b, c; z).

Solutions of polynomial type exist if and only if (17) is of so-called degenerate type. This
means that the monodromy group around one of the regular singular points 0, 1,∞ is trivial
[29, section 2.2]. These solutions, expressed in terms of Jacobi polynomials P

(α,β)
m (z), are

shown below:
f1(z) = F(a, b, 1 + a + b − c; 1 − z) a = −m

∝ P
(α,β)
m (2z − 1) α = b − c − m β = c − 1

f2(z) = z1−c(1 − z)c−a−bF (1 − a, 1 − b, 1 − a − b + c; 1 − z) a = m + 1

∝ zβ(1 − z)αP
(α,β)
m (2z − 1) α = c − b − 1 − m β = 1 − c

f3(z) = (1 − z)c−a−bF (c − a, c − b, 1 − a − b + c; 1 − z) c − a = −m

∝ (1 − z)αP
(α,β)
m (2z − 1) α = −b − m β = c − 1

f4(z) = z1−cF (a + 1 − c, b + 1 − c, 1 + a + b − c; 1 − z) c − a = m + 1

∝ zβP
(α,β)
m (2z − 1) α = b − 1 − m β = 1 − c

(18)
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-3 -2 -1 1 2 3
x

10

-10

-20

-30

U

Figure 1. Deformations U
(m)
ho (x) of the harmonic oscillator for m = 0, 1, 2, 3.

We will need (16) to construct algebraic deformations of the harmonic oscillator and the
Morse potential, and (18) to construct the algebraic deformations of the hyperbolic Pöschl–
Teller potential.

3.4. The harmonic oscillator

The general solution of

−φ′′(x) + Uho(x)φ(x) = λφ(x) Uho(x) = x2 (19)

is given by

φho(x; λ,A0, A1) = (
A0	

(
1
4 − λ

4 , 1
2 ; x2

)
+ A1x	

(
3
4 − λ

4 , 3
2 , x2

))
e− x2

2 (20)

The nth bound state is

ψho,n(x) ∝ e− x2

2 Hn(x) ∝
{

φho(x; 1 + 2n, 1, 0) n even

φho(x; 1 + 2n, 0, 1) n odd
(21)

where Hn(z) denotes the nth Hermite polynomial. For λ < 1, the nodeless solutions of (19)
are given by

φho(x; λ, 1, t) |t | � 2
�(3/4 − λ/4)

�(1/4 − λ/4)
(22)

with the extreme values of t corresponding to φ±. This follows from the asymptotic properties
of 	 for large x [29, section 6.13.1].

Applying (16) with c = 1/2 and a = 1/4 − λ0/4, cf (20), it follows that algebraic
deformations only occur when the factorization energy λ0 is an odd integer. We rule out
y1(z) and y2(z) because we need λ0 < 1. We rule out y4(z), because (22) shows that the
corresponding eigenfunction always has node. Thus, we are left with factorization functions
of the form

φ
(m)
ho (x) = e− x2

2 y3(x
2) = φho(x;−1 − 4m, 1, 0) ∝ e

x2

2 H2m(ix).

In this way we obtain the following algebraic deformations of the harmonic oscillator (see
figure 1):

U
(m)
ho (x) = x2 − 2∂xx(log H2m(ix)) − 2 m = 0, 1, 2, . . . . (23)
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The harmonic oscillator is shape invariant, and so the zeroth deformation is again a
harmonic oscillator, albeit with a spectral shift. The potentials and eigenfunctions of the
higher deformations are described in [30, 31]. The full, two parameter family of backward
transformations is discussed in [9].

The new spectral minimum is −1 − 4m, and the new ground state is a multiple of

ψ
(m)
ho,0(x) ∝ (

φ
(m)
ho (x)

)−1 ∝ e− x2

2 (H2m(ix))−1.

The rest of the spectrum is unchanged. The Darboux transformation corresponds to the
operator

α
(m)
ho = ∂x − ∂x log

(
e

x2

2 H2m(ix)
)

= ∂x − x − 4 imH2m−1(ix)

H2m(ix)
.

Consequently, the higher bound states are

ψ
(m)
ho,j ∝ α

(m)
ho [ψho,j−1] = e− x2

2 (H2m(ix))−1p
(m)
j (x) j = 1, 2, . . .

where

p
(m)
j (x) = 2(j − 1)H2m(ix)Hj−2(x) − 2xH2m(ix)Hj−1(x) − 4imH2m−1(ix)Hj−1(x).

Thus, the even polynomials

qk(z) = p
(m)
2k (x) z = x2 k = 1, . . . , n

together with q0 = 1, span an invariant (n + 1)-dimensional submodule of Pn+m. The odd
polynomials

rk(z) = x−1p
(m)
2k+1(x) k = 0, . . . , n

also span an (n + 1)-dimensional invariant submodule of Pn+m. Therefore, algebraic
deformations of the harmonic oscillator are exactly solvable by polynomials.

3.5. The Morse potential

The Morse potential [18] has the form

Umo(x) = −(
A + 1

2

)
e−x + 1

4 e−2x. (24)

The function

φmo(x; k, C+, C−) =
∑
±

C± exp

(
±kx − 1

2
e−x

)
	(∓k − A, 1 ∓ 2k, e−x) (25)

is, generically, the general solution of the corresponding Schrödinger equation

−φ′′(x) + Umo(x)φ(x) = −k2φ.

In the singular case where 1 − 2k is a non-positive integer, the general solution can be given
as

φmo(x; k, C+, C−) = C+ exp
(
kx − 1

2 e−x
)
�(−k − A, 1 − 2k, e−x)

+ C− exp
(−kx − 1

2 e−x
)
	(k − A, 1 + 2k, e−x) (26)

where � is the irregular solution of the confluent hypergeometric equation.
There are no bound states if A � 0, and �A bound states otherwise, with the nth bound

state being

ψmo,n(x) ∝ φmo(x,A − n, 0, 1) ∝ exp
(
(n − A)x − 1

2 e−x
)
L2(A−n)

n (e−x) 0 � n < A.

(27)
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We will focus on deformations of potentials with bound states only. For A > 0, the spectral
minimum is −A2, and hence we must have

A < |k|. (28)

In the non-singular case we have by [29, section 6.13.1]

φ+ = φmo(x; k, 0, 1), (29)

φ− = φmo

(
x; k, 1,−�(1 − 2k)

�(1 + 2k)

�(k − A)

�(−k − A)

)
. (30)

In the singular cases, when 2k − 1 or A + k is 0, 1, 2, . . . , we have

φ− = φmo(x; k, 1, 0). (31)

The above hold for k > A. For k < −A, the order of C+, C− is reversed.
To obtain algebraic deformations we apply (16) with a = −k − A and c = 1 − 2k, and

consider the four possible factorization functions

φi(x) = exp
(
kx − 1

2 e−x
)
yi(e

−x) i = 1, 2, 3, 4

in turn.
Let m be a non-negative integer. For φ1 we need k + A = m, which by (28) implies that

A < m
2 . Hence, by (25), (31),

φ1(x) = φmo(x;m − A, 1, 0) = φ−(x)

and therefore it generates an isospectral deformation.
For φ2(x) we need 1 − k + A = m, which by (28) implies A < m

2 − 1
2 . Hence, by

(25), (29),

φ2(x) = φmo(x; 1 + A − m, 0, 1) = φ+(x)

and therefore it also generates an isospectral deformation.
For φ3(x) we need k − 1 − A = m, and hence by (25)

φ3(x) = φmo(x;m + 1 + A, 1, 0).

By (30) this function is nodeless if and only if

�(1 − 2k)

�(−k − A)
= �(−1 − 2A − 2m)

�(−1 − 2A − m)
> 0 (32)

which holds for even m, and fails for odd.
For φ4(x) we need k + A = −m. Hence,

φ4(x) = φmo(x;−m − A, 0, 1) = φ+(x)

and therefore it generates an isospectral deformation.
It follows that the only algebraic deformations of the Morse potential, corresponding to

backward transformations, correspond to the factorization function

φ(m)
mo (x) = φ3(x) ∝ exp

(
(m + A + 1)x + 1

2 e−x
)
L−2(1+m+A)

m (−e−x) A > 0 m even.

The resulting potentials have the form

U(m)
mo (x) = −(

A + 3
2

)
e−x + 1

4 e−2x − 2∂xx

(
log L−2(1+m+A)

m (−e−x)
)
. (33)

The Darboux transformation corresponds to the operator

α(m)
mo = ∂x − ∂x

(
log φ(m)

mo

)
= ∂x − (1 + m + A) +

1

2
e−x +

e−xr ′
m(e−x)

rm(e−x)
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Figure 2. Algebraic deformations U(m)(x) of the Morse potential for A = 2.5 and m = 0, 1, 2
and 3.

where

rm(z) = L−2(1+m+A)
m (−z).

Applying α(m)
mo to the bound states (27), we infer that the bound states of the deformed potential

are

ψ
(m)
mo,j (x) =

(
exp

(
(j − A)x − 1

2 e−x
)

rm(e−x)

)
p

(m)
j (e−x)

where

p
(m)
j (z) = qj (z)rm(z)(z + n − m − 2A − 1) − zq ′

j (z)rm(z) + zqj (z)r
′
m(z)

qj (z) = L
2(A−j)

j (z).

Note that the p
(m)
j (z) are polynomials of degree j + m + 1, and hence, for every n, the

polynomials

1, p
(m)
0 (z), p

(m)
1 (z), . . . , p(m)

n (z)

span a codimension m invariant subspace of Pm+n+1(z). We have demonstrated that algebraic
deformations of the Morse potential are exactly solvable by polynomials (see figure 2).

3.6. The hyperbolic Pöschl–Teller potential

The hyperbolic Pöschl–Teller potential [19], which includes the class of reflectionless one-
soliton potentials [32], has the form

Upt(x) = 1
4

(
1
4 − A2

)
sech2

(
x
2

)
. (34)

The general solution [29, section 2.9] of the corresponding Schrödinger equation

−φ′′(x) + Upt(x)φ(x) = −k2φ(x)

can be given as

φpt(x; k, C0, C1) = cosh
(x

2

) 1
2 −A

{
C0F

(
−A

2
+

1

4
+ k,−A

2
+

1

4
− k,

1

2
;− sinh2

(x

2

))

+ C1 sinh
(x

2

)
F

(
−A

2
+

3

4
+ k,−A

2
+

3

4
− k,

3

2
;− sinh2

(x

2

))}
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where F(a, b, c; z) also denotes the analytic continuation of the hypergeometric function to
Re(z) < 0. For A > 1/2, the potential (34) has �A − 1

2 bound states

ψpt,j (x) 0 � j < A − 1
2 .

The even bound states are

ψpt,2i (x) ∝ φpt

(
x; A

2
− i − 1

4
, 1, 0

)

∝ cosh
(x

2

) 1
2 −A

P
(− 1

2 ,−A)

i (cosh x). (35)

The odd ones are

ψpt,2i+1(x) ∝ φpt

(
x; A

2
− i − 3

4
, 0, 1

)

∝ sinh
(x

2

)
cosh

(x

2

) 1
2 −A

P
( 1

2 ,−A)

i (cosh x). (36)

We focus on deformations of potentials with bound states only, i.e. A > 1
2 . The spectral

minimum is −(
1
2 − A

)2
. For |k| > 1

2 − A, the nodeless solutions of (19) are given by

φpt(x; k, 1, t) |t | � 2
�(3/4 + k − A/2)�(3/4 + k + A/2)

�(1/4 + k − A/2)�(1/4 + k + A/2)
(37)

with the extreme values of t corresponding to φ± [29, section 2.3.2, 2.10].
To obtain algebraic deformations, we apply (18) with

a = 1

4
+ k − A

2
b = 1

4
− k − A

2
c = 1 − A (38)

and consider the four possible factorization functions

φi(x) = cosh
(

x
2

) 1
2 −A

fi

(
cosh2

(
x
2

))
i = 1, 2, 3, 4.

We rule out φ2(x) and φ3(x) because these are odd functions, and hence have a node. The
factorization functions of the form

φ1(x) = φpt

(
A,

A

2
− 1

4
− m, 1, 0

)

∝ cosh
(x

2

) 1
2 −A

P
(− 1

2 ,−A)
m (cosh(x))

are nodeless for m > A − 1
2 . The factorization functions of the form

φ4(x) = φpt

(
A,−A

2
− 1

4
− m, 1, 0

)

∝ cosh
(x

2

) 1
2 +A

P
(− 1

2 ,A)
m (cosh(x))

are nodeless for all m = 0, 1, 2, . . . .

Thus, we see that there are two series of algebraic deformations. In order to study
deformations for all possible m, we focus on the latter series. The resulting potentials have
the form

U
(m)
pt (x) = −1

4

(
A +

1

2

)(
A +

3

2

)
sech2

(x

2

)
− 2∂xx

(
log P

(− 1
2 ,A)

m (cosh x)
)

. (39)

The Darboux transformation corresponds to the operator

α
(m)
pt = ∂x − ∂x log φ4(x).
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Figure 3. Algebraic deformations U
(m)
pt (x) of the hyperbolic Pöschl–Teller potential (39), with

A = 4 and m = 0, 1, 2 and 3.

Applying α
(m)
pt to the even bound state functions (35) yields

ψ
(m)
pt,2j (x) = µ(m)(x)s

(m)
j (w) (40)

where

µ(m)(x) = cosh( x
2 ) sinh(x)

(w + 1)qm(w)

w = 2z + 1 = cosh(x)

s
(m)
j (w) = (w + 1){p′

j (w)qm(w) − q ′
m(w)pj (w)} − Aqm(w)pj (w)

qm(w) = P
(− 1

2 ,A)
m (w)

pj (w) = P
(− 1

2 ,−A)

j (w).

Hence, the deformed operator, conjugated by the gauge factor µ(m)(x), preserves the
codimension m submodule of Pm+n(z) spanned by s

(m)
j (w), j = 0, . . . , n. A similar result

holds for the deformation of the odd bound states (36). Therefore, algebraic deformations of
the hyperbolic Pöschl–Teller potential are exactly solvable by polynomials (see figure 3).

4. Exceptional monomial modules.

In this section we characterize the algebraic structure of the first-fold deformations (m = 1)

described in the preceding section. We will show that this is precisely the class of exactly
solvable operators that preserves the infinite flag of polynomial modules

P(1)
0 ⊂ P(1)

2 ⊂ P(1)
3 ⊂ · · · ⊂ P(1)

n ⊂ · · · (41)

where

P(1)
n = span{1, z2, z3, . . . , zn} P(1)

0 = span{1}. (42)

We will call such modules exceptional monomial modules. They are exceptional in the sense
that the family of second order operators that leave them invariant is very rich [22, 25]. To
this effect, let us begin by the following

Proposition 2. A second-order differential operator preserves P(1)
n if and only if it is a linear

combination of the following seven operators:
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Table 2. Second-order operators preserving the exceptional monomial module.

P(z) Q(z) z(x)

Ia (1 − z)(z + 2 + 2A) q2z + 2A + 1 − 4(1 + A)z−1
( 3

2 + A
)

cosh(x) − A − 1
2

Ib z(1 − z) q2z − 1 cosh2
(

x
2

)
Ic −(1 + z2) q2z + 2z−1 sinh x

IIa −(z − 1)2 q2z − 2 + 2z−1 −(2A + 3) ex + 1
IIb −z2 q2z ex

IIIa 8(1 − z) q2z + 8 − 16z−1 2x2 + 1
IIIb −4z q2z + 1 x2

IV −1 q2z + 2z−1 x

T
(+2)

2 = z4∂zz + 2(1 − n)z3∂z + n(n − 1)z2 (43)

T
(+1)

2 = z3∂zz − (n − 1)z2∂z (44)

T
(0)

2 = z2∂zz (45)

T
(−1)

2 = z∂zz − ∂z (46)

T
(−2)

2 = ∂zz − 2z−1∂z (47)

T
(0)

1 = z∂z (48)

T
(0)

0 = 1. (49)

A proof of the proposition is found in [22, 25]. If the linear combination contains the raising
operators T

(+2)
2 and T

(+1)
2 then the operator will preserve P (1)

n but not the whole flag (41).
These cases are called quasi-exactly solvable in the literature [15–17] and will be analysed in
detail in [25]. Since we restrict to exactly solvable cases, we shall consider only the following
linear combination

T = p2T
(0)

2 + p1T
(−1)

2 + p0T
(−2)

2 + q2T
(0)

1 (50)

where the additive constant has been neglected. This can be written as

T = P(z)∂zz + Q(z)∂z (51)

where

P(z) = p2z
2 + p1z + p0 (52)

Q(z) = q2z − p1 − 2p0z
−1 (53)

are quadratic polynomials whose coefficients p2, p1, p0 and q2 are arbitrary real numbers.
The exceptional monomial module P(1)

n is invariant with respect to scaling of the z

variable. By also allowing rescaling of the physical variable x, it suffices to consider the
following canonical cases.

In cases Ib, IIb and IIIb, the operator is of the form shown in (13), and therefore preserves
the full Pn and not just the exceptional module P(1)

n . Thus, these cases describe undeformed
shape-invariant potentials. Cases Ic and IV correspond to singular potentials, and will not be
discussed further.

Proposition 1 shows that the non-singular potentials in case Ia correspond to

q2 = ±(
A + 3

2

)
.
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Both possibilities yield the same potential form, so we take the former. Using (11), (39) we
have

U(x) = −1

4

(
A +

1

2

) (
A +

3

2

)
+ 2

k cosh x − 1

(cosh x − k)2
k = 2A + 1

2A + 3

= U
(1)
pt (x) +

(
5

4
+

A

2

)2

.

For similar reasons, for case IIIa potentials we must take q2 = 4. Using (11), (23) we
obtain

U(x) = 3 + x2 +
8

2x2 + 1
− 16

(2x2 + 1)2

= U
(1)
ho (x) + 5.

For the case IIa, we translate the x variable and do a spectral shift to set q2 = 2A + 3. In
this way, (11), (33) yields

U(x) = (2 + A)2 +
1

4
e−2x −

(
A +

3

2

)
e−x +

2k ex

(1 − k ex)2
k = 2A + 3

= U(1)
mo (x) + (2 + A)2.

We should note that the above potential form is non-singular only if 2A + 3 < 0. This is
unavoidable, in as much as we showed in section 3.5 that the odd deformation of Morse
potentials with bound states produce singular potentials.

In summary, we have demonstrated that non-singular Hamiltonians that are exactly
solvable by an infinite flag of exceptional monomial modules and not by the ordinary flag
(1) are precisely the first-fold algebraic deformations of the non-singular shape-invariant
potentials.

Although these new potentials preserve a full flag of polynomial subspaces, and therefore
are exactly solvable in the sense defined by Turbiner in [15], they do not possess a hidden
sl(2) symmetry algebra structure. This shows that the exactly solvable class is wider than the
Lie-algebraic one.
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[17] González-Lopez A, Kamran N and Olver P J 1993 Commun. Math. Phys. 153 117
[18] Morse P M 1929 Phys. Rev. 57 57
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